

Agenda

- ► Introduction to MassCEC
- ➤ Introduction to the Medium and Heavy-Duty Mobile Charging Solutions Program
- ➤ What is mobile charging?
- ➤ Mobile charging use cases
- ➤ Mobile Charging Panel
 - Xos Trucks
 - Dannar
 - Luvante
- ➤ Question & Answer

ACCELERATING DECARBONIZATION

We contribute to meeting our state's ambitious climate goals by tackling barriers to widespread use of clean energy and climate technology in buildings, transportation, and the grid.

MASSCEC'S WORK BY FOCUS AREA

EMERGING CLIMATETECH

We help new climatefocused businesses grow faster by backing a vibrant community of researchers, startups, and established industry players creating an ecosystem where they connect and thrive.

LARGE SCALE DEPLOYMENT: OFFSHORE ENERGY

We're building a cuttingedge offshore energy industry, marshaling world-class ports while addressing supply chain and workforce development challenges.

CLEAN ENERGY & CLIMATE WORKFORCE DEVELOPMENT

We're growing a diverse and talented clean energy workforce by supporting a dynamic network of community-based organizations, labor, training providers, schools and employers committed to a sustainable future for all.

Electric Vehicle Infrastructure Coordinating Council (EVICC)

- ► In 2024, the EVICC awarded MassCEC \$38M to increase access to charging infrastructure for various sectors
- ► EVICC identified **mobile charging** as a promising technology that can help fleet owners electrify without the need for immediate large-scale investment in charging infrastructure

Medium and Heavy-Duty (MHD) Mobile Charging Solutions Program

PROGRAM OVERVIEW

➤ The Program will accelerate the electrification of four MHD fleets (class 3-8) through the deployment of mobile charging stations

PROGRAM GOALS

- ► Increase access to Mobile Charging and reduce barriers to EV adoption for MHD fleet owners and operators in MA;
- ➤ Pilot innovative Mobile Charging stations that can be scaled across the Commonwealth; and
- ➤ Publish resources for MHD fleet owners and operators in MA to implement Mobile Charging solutions independently
 - Mobile Charging Technology Inventory

PROGRAM SERVICES

- **►** Mobile Charger Deployment
 - Fund the deployment mobile charging stations for four participating fleets
- Supplemental Funding
 - Participating fleets are eligible for supplemental funds to procure MHD Zero Emission Vehicles (ZEVs)
- ➤ Charging stations and MHD ZEVs will be deployed on a rolling basis no later than February 2026
- ➤ The Program is fully enrolled

What is Mobile Charging?

- Mobile Charging refers to any type of semi-permanent, off-grid, and grid-flexible charging solution that can be disconnected and transported between locations
 - Mobile Charging: Charging units with smaller footprints typically occupying a parking space - and can be disconnected and transported between EV charging locations
 - Semi-Permanent Charging: Charging solutions that require direct grid/generator connection. These units are not readily relocatable
 - Charging-as-a-Service (CaaS): Delivers on-demand and scheduled charging solutions for fleets with the supply, installation, and management of mobile charging units operated by the Service company

Medium- and Heavy-Duty Mobile Charging Solutions Pilot Technology Inventory

May 2025

The following document is designed to provide a high-level overview of individual original equipment manufacturer (OEM) companies within the mobile and semi-permanent charging space engaged in the Medium- and Heavy-Duty Mobile Charging Solutions Pilot that generate zero point source emissions. The included asset details are designed as a preliminary tool to introduce fleets to diverse options within the mobile and semi-permanent charging industry that may fit their fleet needs.

Page 1 of 1

Mobile Charging Technology Inventory

What Barriers Does Mobile Charging Address?

- Based on previous EV and charging station deployment programs, MassCEC has identified specific problem areas that can be addressed by mobile charging
 - Charging Station Right-Sizing Mobile and temporary charging can inform fleet owners about appropriate charging needs prior to permanent charging station installation
 - Facility Upgrade and Infrastructure Installation Delays Mobile charging can provide a temporary solution to ensure that vehicles remain operational until charging stations are energized
 - Facility Ownership Structures Mobile charging stations can provide temporary or longer-term solutions for fleets unable to install permanent infrastructure due to lease agreements
 - **Grid and/or Space Constraints** Mobile charging units that don't require connection to the grid and have smaller footprints are preferable for fleets with grid and/or space constraints

Mobile Charging Solutions – Decision Making Support

The Mobile Charging

Decision Tree is designed to support thinking through which charging formats may align with fleet needs.

Panelists

Aldan Shank
Director of Mobile Charging
Xos Trucks

Matt Meyer
Sales and Business Development
Dannar

Chris Angelou CEO Luvante

How Mobile Charging Creates Flexibility for EV Fleets

CHARGING INFRASTRUCTURE CHALLENGES

Costs

- Equipment
- Eng. / Project
- Peak demand

Time

- Up to 36 months
- Switchgear upgrades
- Permitting, supply chain, construction

Flexibility

- Requires more current
- No energy storage
- Permanent

OPTION 1: CHARGE AND TRANSPORT

2. Deploy the Hub

3. Charge up to 4 EVs

4. Remotely Monitor

OPTION 2: CHARGE IN PLACE

Charge from AC site power (480, 240, 208 V)

Charge from existing DC Fast Charger

or

COMMON APPLICATIONS

Stopgap Charging

Property Constraints

Remote Power

Backup Power

Stationary Installations

Emergency Response

Scan for Xos Hub One-Pager

Contact: aldan.shank@xostrucks.com

UPCOMING MODELS

Xos Hub - EV Charging Station

- Q1 2026: Additional Variants
 - 210 kWh
 - 420 kWh
 - 630 kWh
 - Super charger (200 kW charge speed)

Xos MG-01 - Energy Storage System

- Q2 2026: Zero-emissions generator alternative
 - AC/DC import, AC export
 - Bi-directional

SPECIFICATIONS

Tharge Heads: 4

Plug Type: CCS1 (NACS available)

① Output Charge: up to 160 kW

- Battery Capacity: 280 kWh
 Units linkable for double, triple, etc.
 capacity
- Dimensions & Curb Weight 135" x 40" x 62" <10,000 lbs (including trailer)</p>

- Tow Vehicle
 ½ to ¾ Ton Pickup
- Input Charge Options 480, 240, or 208 Vac 3-Phase or CCSI DCFC Optional add-on: 208/240V Single Phase
- Connectivity
 4G / WiFi
- Estimated Recharge Time3.5 hrs via 480 V @ 80 kW2.5 hrs via 120 kW DCFC
- Expected Charge Times from 20% to 90% SOC @ 150 kW output speed: Tesla Model 3 (50-82 kWh) 14 to 23 Chevy Bolt (55 kW max input) min ~1 hour Ford F-150 Lightning (98-131 kWh) 28 140 kWh Xos Step Van 39 min to 37 min

POWER OUTPUT

Output based on configuration (kW per chargehead)*

^{*}Assumes Hub battery is fully charged

Configuration	Number of Connected Chargeheads					
	1	2	3	4		
Disconnected from Power Source	150	75	50	38		
Connected to grid @ 100A 480Vac 3P	160	115	77	58		
Connected to grid @ 100A 240Vac 3P	160	95	63	48		
Connected to 120 kW DCFC	160	150	80	68		

Introduction to DANNAR®

Modular Work Platform: Configurable for the Day or Season

Energy First Solutions

Power to Transform

CAPACITY: up to 800 kWh of clean energy

MOBILITY: Drive power directly where needed

FLEXIBILITY: 120v/240v, add 480 3-P, DC Fast Charger

MICROGRID: effective DER with Renewables

Hydrogen Fuel Cell: upfit for Range Extension

RESILIENCY: Storm/Fire/Emergency

Use Case: Mobile Charging

- Capacity to 800kWh
- (2) Level 3 Fast Chargers (Pii), total ROC to 180kW
- Level 2 Charger
- Mobility
 - Save Infrastructure Cost & Timing
 - Augment Fixed Assets
 - Drive MPS where needed

Use Case: Jobsite Power & Work

POWER

- Fast Charge e-Equipment, Pickups
- Compressors, Pumps, Lights, Batteries
- Pair w/genset for **Energy Capture**

WORK

- Carry (mule), Lift, Material Handle
- Pull Equipment/Tools/Receptacles
- Scoop, Skim, Dig, Trench

Matt Meyer

Business Development Manager mmeyer@dannar.us.com (574) 329-9768

2200 E Bunch Blvd, Muncie, IN San Clemente, CA

Available on GSA/CMAS Manufactured in USA

500kWh

250kWh

375kWh

Sustainable Elevated Electric Vehicle Charging Infrastructure

September 2025

LUVANTE

Sustainable Elevated Electric Vehicle Charging Infrastructure

THE PROBLEM: IN GROUND INFRASTRUCTURE CONSTRUCTION

LUVANTE

Sustainable Elevated Electric Vehicle Charging Infrastructure

FLEET

Off-Grid

On-Grid

LUVANTE

Sustainable Elevated Electric Vehicle Charging Infrastructure

STREET

THE SOLUTION

	Name			Description	
1 Protective Cover			Aluminum Composite Panels, Lightweight Aluminum Skeleton, Self-Sealing Stainless Fasteners		
2	Supporting Bridge			6 x13 Steel C-Channel, Unistrut	
3	3 Operable Soffit			Perforated Steel Sheet, Lightweight Aluminum Frame, Stainless Fasteners, Continuous Hinge, Locking Hardware	
4	Vertical Support Column			Structural Steel Frame, Fire Rated ACM Cover	
5 Replace	Poplaceable Crush Zone	5a	Fixed Upper Section	Form Sheet Steel, 11-gauge, Shop Painted, Stainless Fasteners	
5	Replaceable Crush Zone	5b	Adjustable Skirt		
6	Foundation	2		Hubbell-Chance Helical Screw Pile with Alignment Coupler OR concrete footing, precast or cast-in-place	
7 Busway/Plu		7a	Busway	Siemens Sentron Busway System, Fusible Busplugs (1 per - charger), End Tap Box	
	Busway/Plug System	7b	Busplug		
		7c	End Tap Box		
8	EV Charging Units			End-User Charging Stations	

ON GRID – OFF GRID CAPABLE

VALUE PROPOSITION VS IN GROUND

~ 20% Less Cost

- Reduced civil construction
- 2. Kit of parts
- 3. Less trenching
- Easily add units \
 chargers
- 5. Virtually no abandoned assets on relocation
- 6. Financing Options

~ 40% Faster

- 1. Modular prefab
- 2. Kit of parts
- 3. Less trenching
- 4. Faster site approvals
- Easily add units \chargers

~90% Less Trenching

- 1. Above ground solution
- 2. Lower cost
- 3. Virtually eliminate lot disruption
- 4. Superior client satisfaction
- 5. Faster
- 6. Less carbon

~ 60% Less Carbon

- 1. Less trenching, less asphalt
- 2. Relocate reuse
- One stub up electrical supply
- 4. Less concrete

LUVANTE

THANK YOU!

CONTACT:

Chris Angelou, Partnerships

Morgan Allan, Sales

Todd Buchanan, Investment

Questions?

Join us next week for part two!

OEM Inventory Part 2: October 8, 2025, 1-2 pm ET Register

Coming Soon

Mobile Charging Case Studies: November 6, 2025, 1-2pm ET Register

MassCEC MHD Mobile Charging Solutions Pilot: March 2026

