

Agenda

- ► Introduction to MassCEC
- ➤ Introduction to the Medium and Heavy-Duty Mobile Charging Solutions Program
- ➤ Technology Inventory
- ➤ Mobile Charging Panel
 - CALSTART
 - Xos Trucks
 - ElectricFish
- ➤ Question & Answer
- ➤ Closing

ACCELERATING DECARBONIZATION

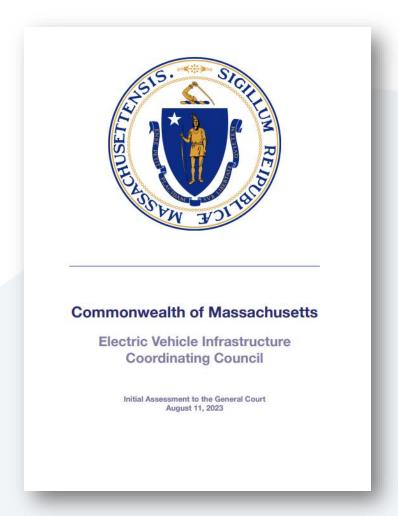
We contribute to meeting our state's ambitious climate goals by tackling barriers to widespread use of clean energy and climate technology in buildings, transportation, and the grid.

MASSCEC'S WORK BY FOCUS AREA

EMERGING CLIMATETECH

We help new climatefocused businesses grow faster by backing a vibrant community of researchers, startups, and established industry players creating an ecosystem where they connect and thrive.

LARGE SCALE DEPLOYMENT: OFFSHORE ENERGY


We're building a cuttingedge offshore energy industry, marshaling world-class ports while addressing supply chain and workforce development challenges.

CLEAN ENERGY & CLIMATE WORKFORCE DEVELOPMENT

We're growing a diverse and talented clean energy workforce by supporting a dynamic network of community-based organizations, labor, training providers, schools and employers committed to a sustainable future for all.

Electric Vehicle Infrastructure Coordinating Council (EVICC)

- ► In 2024, the EVICC awarded MassCEC \$38M to increase access to charging infrastructure for various sectors
- ► EVICC identified **mobile charging** as a promising technology that can help fleet owners electrify without the need for immediate large-scale investment in charging infrastructure

Medium and Heavy-Duty (MHD) Mobile Charging Solutions Program

PROGRAM OVERVIEW

➤ The Program will accelerate the electrification of four MHD fleets (class 3-8) through the deployment of mobile charging stations

PROGRAM GOALS

- Increase access to Mobile Charging and reduce barriers to EV adoption for MHD fleet owners and operators in MA;
- ➤ Pilot innovative Mobile Charging stations that can be scaled across the Commonwealth; and
- Publish resources for MHD fleet owners and operators in MA to implement Mobile Charging solutions independently

PROGRAM SERVICES

- Mobile Charger Deployment and MHD ZERO Emission Vehicles (ZEVs)
 - Fund the deployment mobile charging stations and ZEVs for four participating fleets
 - Charging stations and MHD ZEVs will be deployed by February 2026
 - The Program is fully enrolled

Public Facing Resources

- Tools to support future MHD fleet owners and operators through mobile charger procurement and deployment
- Resources will be published in December 2026.
 Visit our <u>webpage</u> to view the Technology Inventory

Mobile Charging Solutions Technology Inventory

- ➤ Designed as a tool to introduce fleets to charging units within the mobile and semi-permanent charging industry that fit their fleet needs.
 - Exclusively featuring assets with net-zero emissions
- ➤ The <u>Technology Inventory</u> identifies available Mobile Charging solutions
 - Asset types
 - Ownership models
 - Use cases
 - Storage capacity
 - Grid impacts
 - Deployment timelines
- ➤ What is Mobile Charging?
 - Mobile Charging refers to any type of semi-permanent, off-grid, and grid-flexible charging solution that can be disconnected and transported between locations


Panelists

Madeline Brown Lead Project Manager CALSTART

Aldan Shank
Director of Mobile Charging
Xos Trucks

Vince Wong
Co-Founder and COO
ElectricFish

Mobile and Semi-Permanent Charging Solutions – Bi-Coastal Lessons Learned

MassCEC Overcoming Obstacles

November 6, 2025

Madeline Brown, PhD

SJV Lead Project Manager

Thank you to our partners at the

Attribution and Disclaimers

Photos of various charging solutions are shared throughout this presentation. Photos have been pulled from public-facing websites of the respective companies.

This presentation features discussion and visuals of diverse charging providers. This presentation is not an exhaustive collection of all OEMs available on the market, nor is the inclusion or exclusion of any OEM or asset a formal endorsement or dismissal by MassCEC or CALSTART.

Icons throughout this presentation are attributable to artists hosting their work on The Noun Project. In the order of appearance, icons include;

Chicken by BnB Studio from Noun Project (CC BY 3.0)

solar by QuinX from Noun Project (CC BY 3.0)

Electric truck by krisna arga muria from Noun Project (CC BY 3.0)

Trailer by Juicy Fish from Noun Project (CC BY 3.0)

United States by Linseed Studio from Noun Project (CC BY 3.0) Unlisted Icons via Microsoft PowerPoint

shuttle bus by Droplabs from Noun Project (CC BY 3.0)

charger by Athok from Noun Project (CC BY 3.0)

Power Pole by Berkah Icon from Noun Project (CC BY 3.0)

Transformer by trimenz from Noun Project (CC BY 3.0)

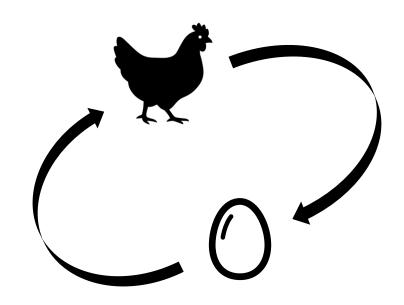
Plug by Template from Noun Project (CC BY 3.0)

maze solving by Dahlia nur aini from Noun Project (CC BY 3.0)

Who is CALSTART?

501(C)(3) nationwide and beyond zero-emission transportation and ecosystems organization. ~250 employees. Board oversight.

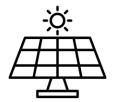
- 3 Regional Offices: San Joaquin Valley, Midwest, *East Coast*
- Activities: Technology Development and Demonstration, Market Acceleration, Public Policy, <u>Data Insights</u> and Analytics (3rd Party Validation), Member Support
- Initiatives: Light Duty, Trucks, Buses, Infrastructure, Innovative Mobility


- ➤ Global Engagement: Global MOU Commercial Vehicle Drive to Zero program. 40+ countries' goal of 100% ZE truck and bus sales by 2040
- > Membership: NOFOs, Partnerships, Policy, Consulting Hours, Leadership Circle, Marketing, etc.

The Challenge

Fleets adopting electric vehicles face varied roadblocks in accessing charging infrastructure.

- Cost Barriers for Permanent Infrastructure
- Incentive Funding Requirements
- Duty Cycle Uncertainty
- Leased Facilities
- Timeline Misalignments
- Construction Disruptions
- Utility Delays
- Outgrowing Existing Infrastructure



Quick Terms

- Mobile: Readily movable
 - Trailer Mount
 - Skid Mount
 - Cart Mount
 - Palletized

- Semi-permanent: no major permitting or construction required.
 - Overhead on piles
 - Containerized

Today's discussion is specifically for electric vehicle charging. *Zero-emission* mobile and semi-permanent solutions can be energized through direct grid connection through an existing panel, solar array, containerized hydrogen, and daisy-chaining. Mobile and semi-permanent solutions can be pass-through, utilize battery storage, and/or include power generation.

Bi-Coastal Recognition

Two public agencies on opposite coasts of the U.S. recognize the critical gaps fleets face in accessing permanent infrastructure – from two different perspectives.

Result: Two pilot solutions that enable fleets to begin zeroemission adoption while permanent infrastructure and vehicle deployment catch up.

Pilot Overview

East Coast - MassCEC

- 4 fleets ←→ Mobile or Semi-Permanent Charging
 - Charging as a Service, Lease, Own
- Identify and address gaps in accessing charging infrastructure, quantify emissions reductions

West Coast - CARB

- 4 fleets ← → Mobile or Semi-Permanent Charging
 - Lease only
- Testing expedited HVIP vehicle access to charging through non-permanent solutions

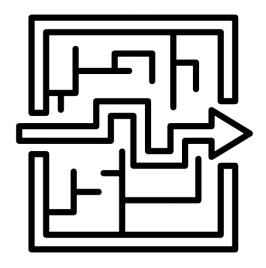
Early Success Indicators

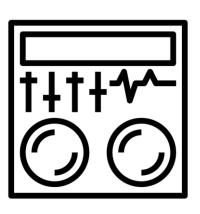
Quantitative

- Cost Offsets and Financial Value: Avoids productivity losses by keeping vehicles on the road, reducing charging detours, downtime, and inefficient charging scenarios
- Fleet Uptime: Integrated smoothly into operations while awaiting permanent infrastructure
- Reliability: Units remain consistently operational with essentially zero downtime, demonstrating the efficacy of the solution
- Emissions Reduced: Cuts GHGs and pollutants, delivering health benefits for DACs/EJ
 communities near freight/transport hubs and corridors [MassCEC metrics coming soon]

Qualitative/Experiential

 Driver/Operator Experience: Easy to use, convenient, and supportive of paradigm shift from ICE to ZEV 99.9%+ charger uptime




Three Themes to Prepare for Charging Success

Moving Beyond "It Depends" Navigating
Solution
Selection(s)

Time to get Creative(?)

Fleet charging challenges are diverse...

So are mobile and semi-permanent charging solutions!

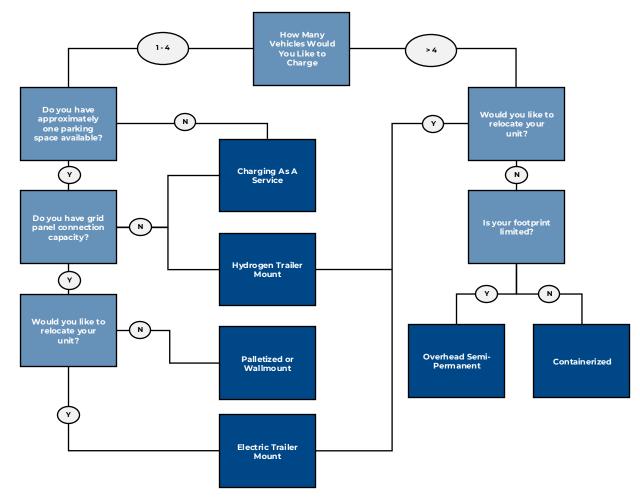
How To Move Beyond "It Depends..."

More specifics lead to fewer surprises.

- Designate time to align on your fleet's big-picture goals and operational details.
- Engage your fleet managers, drivers, and operations staff to reflect on quick fleet considerations that may be siloed.

This supports productive conversations with potential charging providers, utilities, site engineers, construction teams, and your employees.

Fleet Name Your charging challenge Primary Contact Legal Contact Location Lease/Own Number of Vehicles Duty cycles Makes/Models Fuel Type Driver Info utility company Energy Consumption Site Power (A, V, Phase)

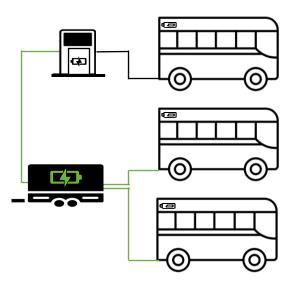


How to Navigate to a Charging Solution

A diverse ecosystem of charging providers offers solutions tailored to different fleet sizes, duty cycles, and operational needs.

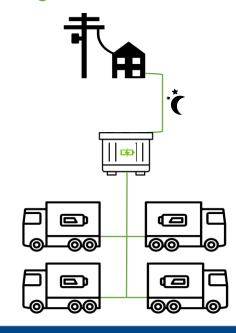
Using your previously collected details, explore an exercise to steer towards, or eliminate, solutions that may not fit.

Solutions are generally scalable (i.e., additional units or onboard energy storage)

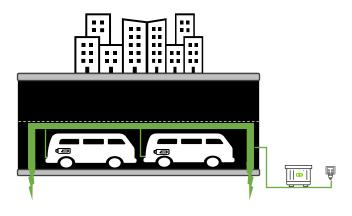


Mix, Match, Mobilize

Don't be afraid to get creative in conceptualizing charging solutions. Blending mobile, semipermanent, and fixed charging solutions can build a setup that fits unique operations.


Insufficient Existing Charging Infrastructure?

A mobile unit may be connected to a permanently installed charger.


Insufficient Grid Capacity?

A skid-mounted or palletized battery + chargers can fill up overnight while grid demand is low.

Insufficient Footprint?

Overhead semi-permanent solutions can be rapidly deployed with just a few pylons (+ battery storage option).

Critical Fleet Reflections

- Foresight Fad
 - Where is your fleet finding success or roadblocks to charging?
- Strategy Stopgap
 - How could some of the solutions discussed today support your specific long-term goals?
- Transformative Temporary
 - What partnerships or tools would help your region go further, faster?

Questions?

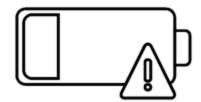
Madeline Brown, PhD mbrown@calstart.org

Thank You

We change transportation for good.

Massachusetts CEC Charging Case Studies Webinar

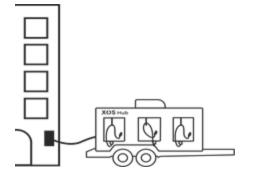
CHARGING INFRASTRUCTURE CHALLENGES


Costs

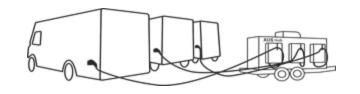
- Equipment
- Eng. / Project
- Peak demand

Time

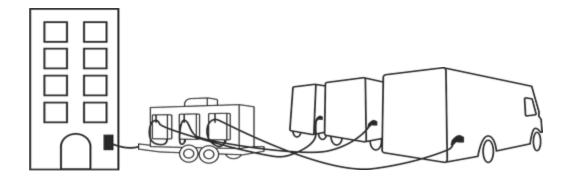
- Up to 36 months
- Switchgear upgrades
- Permitting, supply chain, construction


Flexibility

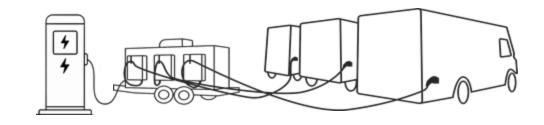
- Requires more current
- No energy storage
- Permanent


OPTION 1: CHARGE AND TRANSPORT

2. Deploy the Hub



3. Charge up to 4 EVs



4. Remotely Monitor

OPTION 2: CHARGE IN PLACE

Charge from AC site power (480, 240, 208 V)

Charge from existing DC Fast Charger

or

COMMON APPLICATIONS

Stopgap Charging

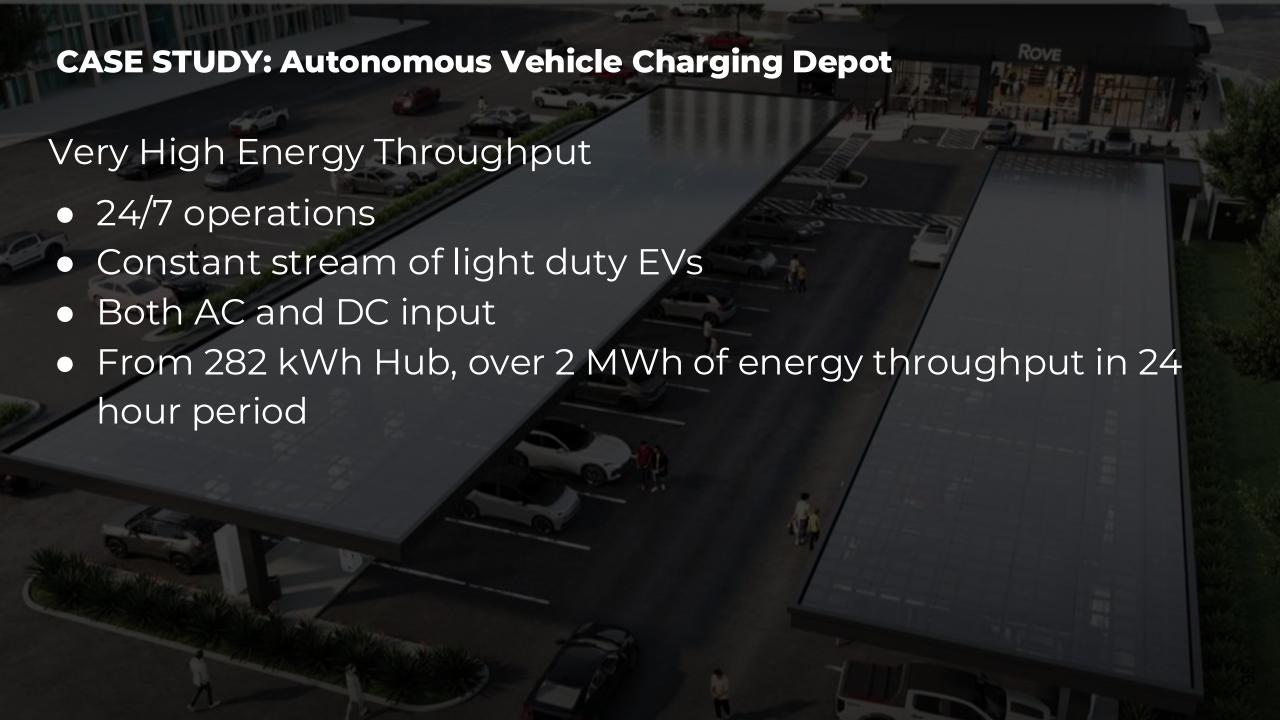
Property Constraints

Remote Power

Backup Power

Stationary Installations

Emergency Response



CASE STUDY: FedEx ISPs (Independent Service Providers)

Parcel delivery fleets

- Small (2 to 20 trucks)
- Low/no site power
- ISPs in Texas:
 - Two companies, same setup
 - 10 electric step vans
 - 1 Hub unit (4 chargers)
 - Sole charging solution

UPCOMING MODELS

Xos Hub - EV Charging Station

- Q1 2026: Additional Variants
 - 210 kWh
 - 420 kWh
 - 630 kWh
 - Q2: Super fast charging option

Xos MG01 - Energy Storage System

- Q2 2026: Zero-emissions battery powered generator
 - o AC/DC import, AC export
 - Bi-directional

Scan for Xos Hub One-Pager

Contact: aldan.shank@xostrucks.com

XOS HUB SPECIFICATIONS

Tharge Heads: 4

Plug Type: CCS1 (NACS available)

① Output Charge: up to 160 kW

- Battery Capacity: 280 kWh
 Units linkable for double, triple, etc.
- capacityDimensions & Curb Weight135" x 40" x 62"<10,000 lbs (including trailer)

Tow Vehicle
½ to ¾ Ton Pickup

- Input Charge Options 480, 240, or 208 Vac 3-Phase or CCS1 DCFC
- Optional add-on: 208/240V Single Connectivity
 Hase
 4G/WiFi
- Estimated Recharge Time3.5 hrs via 480 V @ 80 kW2.5 hrs via 120 kW DCFC

Expected Charge Times from 20% to 90% SOC @ 150 kW output speed:

Tesla Model 3 *(50-82 kWh)* - 14 to 23 min

Ford F-150 Lightning *(98-131 kWh)* - 28 to 37 min

Chevy Bolt (55 kW max input) ~1 hour

140 kWh Xos Step Van - 39 min

XOS HUB POWER OUTPUT

Output based on configuration (kW per chargehead)*

^{*}Assumes Hub battery is fully charged

Configuration	Number of Connected Chargeheads			
	1	2	3	4
Disconnected from Power Source	150	75	50	38
Connected to grid @ 100A 480Vac 3P	160	115	77	58
Connected to grid @ 100A 240Vac 3P	160	95	63	48
Connected to 120 kW DCFC	160	150	80	68

Case Studies Webinar: Overcoming Obstacles in Transitioning Fleets to EVs

November 6, 2025

In collaboration with:

ElectricFish at a glance

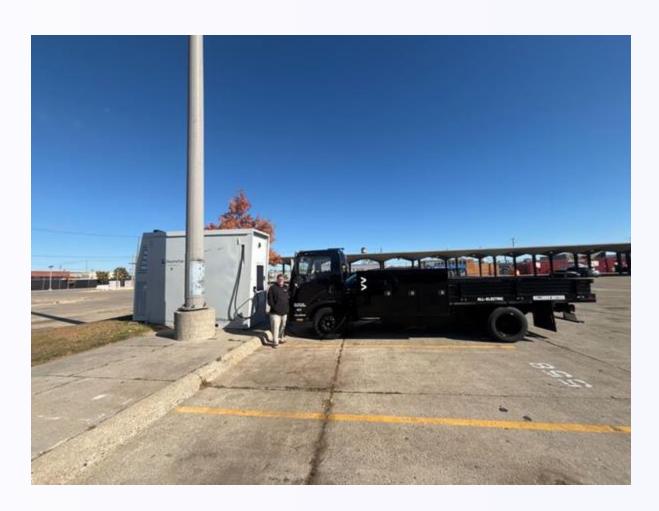
Founded in 2019, based in California and Michigan

Backed by 5 issued US patents

Proven with leading OEMs and government agencies

Built to endure the toughest environments

Select customers & partners



Deployment at Tier 1 OEM fleet research facility

Located in the Mojave Desert, the facility provided the perfect test environment for high-performance fast EV charging

Limited grid infrastructure

Client sought to repurpose a 220V connection which served a defunct 30 kW EV charger

Constant cycling

Client engineers need to regularly conduct high performance tests charging at high speeds, depleting the EV battery quickly, and then repeating the cycle

Extreme heat

Temperatures often surge above 100° F for many consecutive days accompanied with dust storms

ElectricFish 350Squared[™]

Flexible, fast, resilient DC Fast Charging

Al-powered battery storage that does it all:

400 kWh for fleet charging, backup power, and grid services

- Flexible grid inputs:
 Integrates with 208V / 240V / 480V without transformer upgrades
- Best-in-class power electronics:
 High throughput up to 950V backed by liquid cooled cables
 (200 kW with 2-port simultaneously; 350 kW with 1-port)
- Easy to deploy and re-deploy:
 Elegant container design for easy forklift and flatbed transport

The Build and Shipping

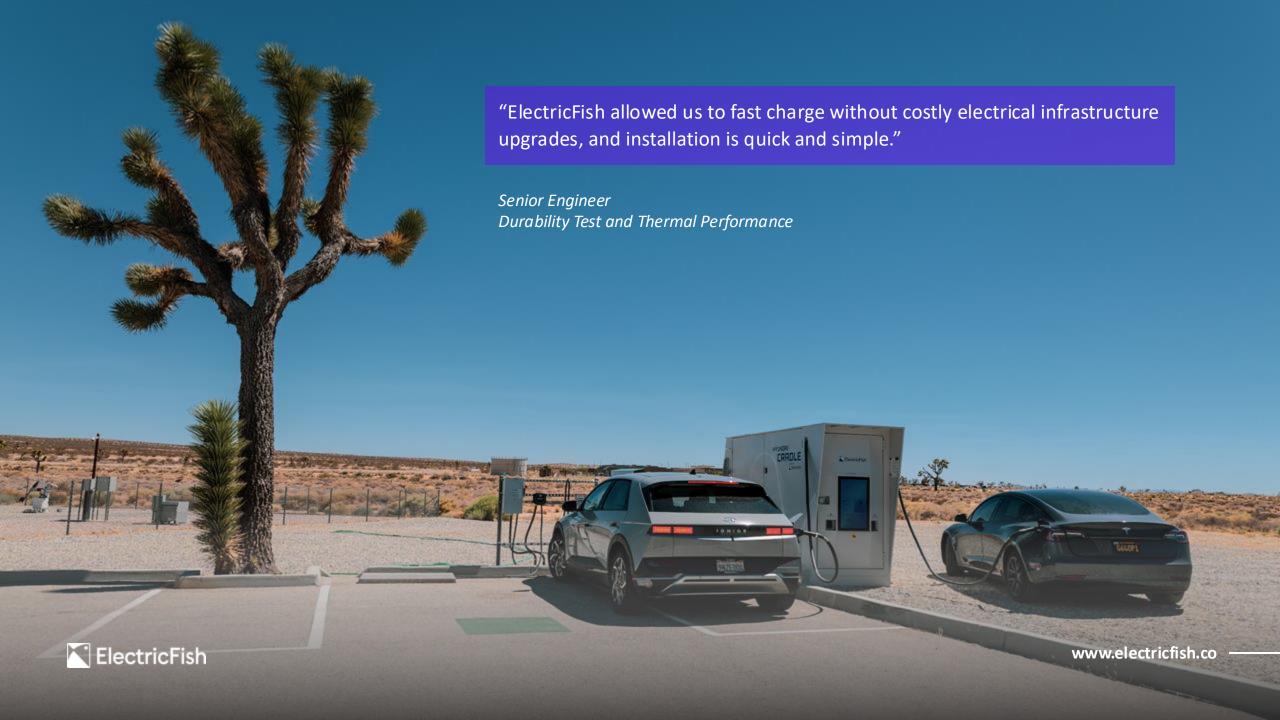
Built at ElectricFish HQ in San Carlos, CA in 6 weeks

Build America Buy America (BABA) compliant

Forkliftable and moveable via flatbed truck

Commissioning

Installation only took 2 hours and only cost \$500


Simple and rapid deployment

Client's electrician partner Tower Electric repurposed the existing, defunct EV Box charger (30 kW) and wired it to ElectricFish's system

No trenching or grid upgrades

The dual-port system (CCS + NACS) did not require any digging and rested securely on desert gravel

KPIs Summary

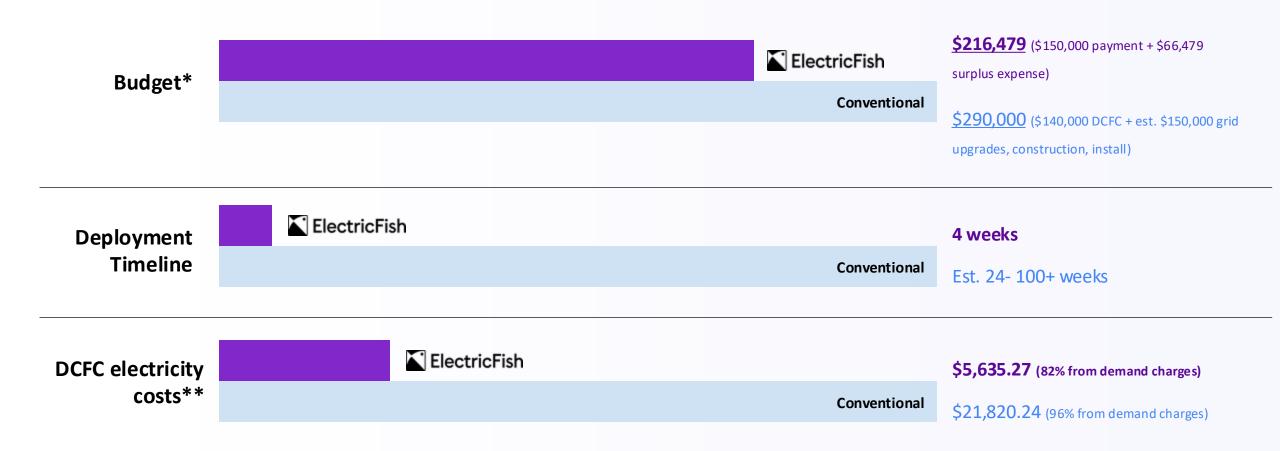
In addition to deployment speed, we proved our performance, durability, and resilience

Best-in-class charging speeds

279 kW peak charging and 87 kWh max delivered in a single session

Robust capacity

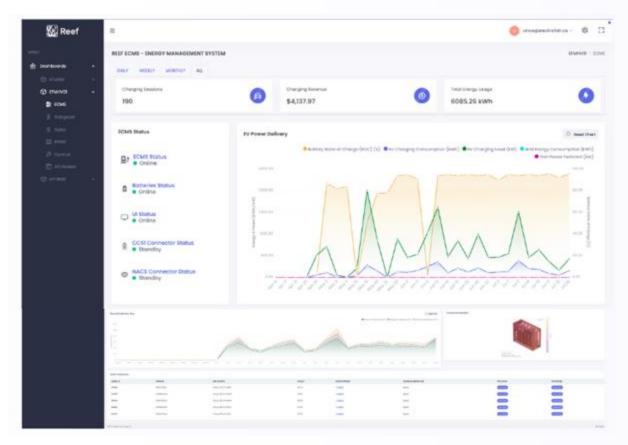
Max of 283 kWh delivered in a single day; 7.4 Mwh delivered across charging and grid services



Beat the heat

Innovative liquid cooled cables and air-cooled batteries for consecutive 100° F days without power electronics failures

Competitive Capex & Opex Comparison vs conventional non-BESS integrated dual-port DC Fast Charger


^{*}Client payment capped at \$150,000 for this pilot; capex excludes cost of R&D as the unit delivered was a new product generation

^{**}EF costs calculated from utility bills from May 14 to August 18, 2025; Conventional costs estimated based on currently enrolled tariffs

Reporting

ElectricFish's Reef dashboard provided comprehensive, real-time and longitudinal analytics and telemetry on system performance

W Reef

- DC Fast Charging session data visualization (kWh, Voltage, kW, SOC)
- System status (SOC, CCS and NACS connectors, UI screen, grid input power)
- Thermal plots enabled by 12 installed heat sensors

Screenshot of Reef dashboard

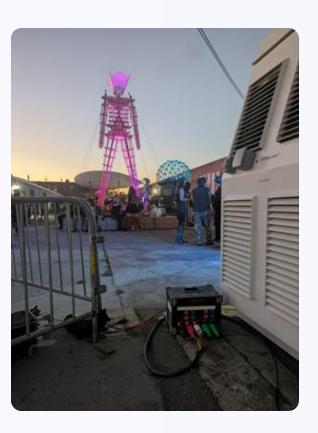
X

User Experience

Seamless "arcade-style" button interface for simple charge initialization

How it works

- 1. Press either the CCS or NACS button to select connector
- 2. Press that same button again to initialize the session
- 3. Pay or use NFC keyfob (Client received free charging sessions)
- 4. Plug in and charge
- 5. Unplug when done


No mobile app downloads required

Additional Use Cases

Questions?

Missed our first two sessions?

Meet Mobile Charging Manufacturers Part 1 & 2 | Recording & Slides

Coming Soon

MassCEC MHD Mobile Charging Solutions Pilot: March 2026

